国产一区二区日韩欧美精品,av中文字幕手机免费观看,无码人妻精品一区二区三区久久久,欧美视频在线观看精品二区,好色美女998国产精品,国产日韩欧美第一页

首頁 新聞動態(tài) 文章詳情

【助力科研】TransGen 助力破解大豆 5000 年馴化密碼

文章信息

文章題目:Genomic atlas of 8,105 accessions reveals stepwise domestication, global dissemination, and improvement trajectories in soybean

期刊:Cell

發(fā)表時間:2025 年 10 月 1 日

主要內(nèi)容:崖州灣國家實驗室田志喜團(tuán)隊通過對 8105 份大豆種質(zhì)進(jìn)行全基因組分析,首次明確黑大豆是大豆馴化的關(guān)鍵中間類型,并揭示其逐步馴化路徑與兩大起源中心(黃淮地區(qū)與西北地區(qū))。研究系統(tǒng)解析了大豆在全球傳播過程中的適應(yīng)性基因選擇與中國育種目標(biāo)的時代變遷,構(gòu)建了首個大豆 QTN 庫與在線變異數(shù)據(jù)庫,為未來高產(chǎn)、高油、高蛋白大豆的精準(zhǔn)育種提供了重要基因資源與平臺。

原文鏈接:

https://www.cell.com/cell/fulltext/S0092-8674(25)01038-4

使用TransGen產(chǎn)品:

pEASY?-Uni Seamless Cloning and Assembly Kit (CU101)

ProteinFind? Anti-GFP Mouse Monoclonal Antibody (HT801)

Genomic atlas of 8,105 accessions reveals stepwise domestication, global dissemination, and improvement trajectories in soybean 

研究背景

現(xiàn)代栽培大豆約在 5000-6000 年前由野生大豆在中國被馴化,隨后逐步傳播至亞洲、歐洲、北美、南美等不同國家和地區(qū),為人類和動物提供了主要的植物油脂和蛋白質(zhì)來源,已經(jīng)成為全球最重要的糧油作物之一。作為重要的豆科作物,大豆在長期馴化、傳播和改良過程中,其種質(zhì)資源在世界各地逐漸形成了豐富的多樣性,在植株形態(tài)、生態(tài)適應(yīng)性、生產(chǎn)特性等方面都發(fā)生了巨大變化和分化。然而,關(guān)于大豆種質(zhì)資源演化的一些重要問題并不清楚,解析大豆種質(zhì)資源遺傳基礎(chǔ),深刻理解性狀形成的決定基因,對大豆種質(zhì)資源利用和優(yōu)良品種培育具有重要意義。

文章概述

研究團(tuán)隊全面調(diào)查了 8105 份大豆材料的進(jìn)化軌跡,包括野生近緣種、地方品種和改良品種,以闡明大豆馴化、傳播和改良的過程。研究發(fā)現(xiàn)黑大豆是大豆馴化歷史上的一個重要中間體,并揭示了性狀和基因的逐步選擇。還闡明了所選基因在大豆傳播和改良中的等位基因多樣性。此外,構(gòu)建了一個包含 8105 份大豆材料的變異圖譜,并建立了一個大豆數(shù)量性狀核苷酸 (QTN) 文庫和一個選定基因的在線遺傳變異數(shù)據(jù)庫。本研究繪制了一幅清晰的大豆在馴化、傳播、改良過程中的關(guān)鍵基因選擇的地理和歷史性“畫卷”圖譜,并提出了新的大豆起源假說。相關(guān)發(fā)現(xiàn)不僅為理解作物馴化與改良的一般規(guī)律提供了新的視角,也為充分利用種質(zhì)資源開展分子設(shè)計育種奠定了堅實的理論基礎(chǔ)和數(shù)據(jù)平臺。

大豆的馴化、傳播與改良過程 

大豆的馴化、傳播與改良過程

全式金生物產(chǎn)品支撐

優(yōu)質(zhì)的試劑是科學(xué)研究的利器。全式金生物的通用版同源重組無縫克隆試劑盒(CU101)、抗 GFP 標(biāo)簽鼠克隆抗體(HT801)助力本研究。產(chǎn)品自上市以來,憑借優(yōu)異的性能,深受客戶青睞,多次榮登知名期刊,助力科學(xué)研究。

pEASY?-Uni Seamless Cloning and Assembly Kit(CU101)

本產(chǎn)品利用特殊的重組酶和同源重組的原理,可以將任意方法線性化后的載體和與其兩端具有 15-25 bp 重疊區(qū)域的 PCR 片段定向重組,可以實現(xiàn)最多 15 個片段的高效無縫拼接。

產(chǎn)品特點

? 陽性率高,克隆數(shù)多。

? 高效連接:最高可實現(xiàn) 15 個片段無縫連接。

? 快速重組:5-15 min 即可完成反應(yīng)。

? 大容量組裝:可成功構(gòu)建 31.8 kb 的質(zhì)粒 (載體+片段)。

? 長載體組裝:支持 14 kb 長載體組裝。

? 廣譜兼容:支持低濃度 (0.003 pmol) 單片段、多片段高效連接。

ProteinFind? Anti-GFP Mouse Monoclonal Antibody(HT801)

抗 GFP 標(biāo)簽鼠單克隆抗體為高純度的抗小鼠單克隆抗體,屬 IgG1 同型,免疫原為人工合成的全長 GFP 蛋白。

產(chǎn)品特點

?  高純度的抗小鼠單克隆抗體,特異性強(qiáng)。

?  高度特異識別重組蛋白 C 末端或 N 末端的 GFP 標(biāo)簽。

?  適用于定性或定量檢測 GFP 融合表達(dá)蛋白。

使用 pEASY?-Uni Seamless Cloning and Assembly Kit(CU101)產(chǎn)品發(fā)表的部分文章:

Xu Y, Zhu T F. Mirror-image T7 transcription of chirally inverted ribosomal and functional RNAs[J]. Science, 2022.(IF 63.71)

Zhu Z, Wang Y, Liu S, et al. Genomic atlas of 8,105 accessions reveals stepwise domestication, global dissemination, and improvement trajectories in soybean[J]. Cell, 2025.(IF 42.50)

Shi J, Mei C, Ge F, et al. Resistance to Striga parasitism through reduction of strigolactone exudation[J]. Cell, 2025.(IF 42.50)

Bai X, Sun P, Wang X, et al. Structure and dynamics of the EGFR/HER2 heterodimer[J]. Cell Discovery, 2023.(IF 38.07)

Wang H, Yang J, Cai Y, et al. Macrophages suppress cardiac reprogramming of fibroblasts in vivo via IFN-mediated intercellular self-stimulating circuit[J]. Protein & Cell, 2024.(IF 21.10)

Xu J, Liang Y, Li N, et al. Clathrin-associated carriers enable recycling through a kiss-and-run mechanism[J]. Nature Cell Biology, 2024.(IF 17.30)

Li B, Zhu L, Lu C, et al. circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity[J]. Nature communications, 2021.(IF 14.92)

Shi C, Yang X, Hou Y, et al. USP15 promotes cGAS activation through deubiquitylation and liquid condensation[J]. Nucleic Acids Research, 2022.(IF 14.90)

Wang J, An Z, Wu Z, et al. Spatial organization of PI3K-PI (3, 4, 5) P3-AKT signaling by focal adhesions[J]. Molecular Cell, 2024.(IF 14.50)

Liu S, Fan L, Liu Z, et al. A Pd1–Ps–P1 feedback loop controls pubescence density in soybean[J]. Molecular plant, 2020.(IF 12.08)

Jin Q, Yang X, Gou S, et al. Double knock-in pig models with elements of binary Tet-On and phiC31 integrase systems for controllable and switchable gene expression[J]. Science China Life Sciences, 2022.(IF 10.37)

Mu S, Chen H, Li Q, et al. Enhancing prime editor flexibility with coiled-coil heterodimers[J]. Genome Biology, 2024.(IF 10.10)

Du G, Xiong L, Li X, et al. Peroxisome elevation induces stem cell differentiation and intestinal epithelial repair[J]. Developmental cell, 2020. (IF 10.09)

Tang Y, Gao C C, Gao Y, et al. OsNSUN2-mediated 5-methylcytosine mRNA modification enhances rice adaptation to high temperature[J]. Developmental cell, 2020.(IF 10.09)

使用 ProteinFind? Anti-GFP Mouse Monoclonal Antibody(HT801)產(chǎn)品發(fā)表的部分文章:

Wu M, Bian X, Huang B, et al. HD-Zip proteins modify floral structures for self-pollination in tomato[J]. Science, 2024.(IF 56.90)

Zhu Z, Wang Y, Liu S, et al. Genomic atlas of 8,105 accessions reveals stepwise domestication, global dissemination, and improvement trajectories in soybean[J]. Cell, 2025.(IF 42.50)

Zeng R, Shi Y, Guo L, et al. A natural variant of COOL1 gene enhances cold tolerance for high-latitude adaptation in maize[J]. Cell, 2025.(IF 42.50)

Ma X J, Wang W, Zhang J Y, et al. NRT1.1B acts as an abscisic acid receptor in integrating compound environmental cues for plants[J]. Cell, 2025.(IF 42.50)

Li Y, Zhang Z, Chen J, et al. Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1[J]. Nature, 2018.(IF 41.00)

Zhao S, Makarova K S, Zheng W, et al. Widespread photosynthesis reaction centre barrel proteins are necessary for haloarchaeal cell division[J]. Nature Microbiology, 2024.(IF 28.30)

Fan H, Quan S, Ye Q, et al. A molecular framework underlying low-nitrogen-induced early leaf senescence in Arabidopsis thaliana[J]. Molecular Plant, 2023.(IF 27.50)

Shi Q, Xia Y, Wang Q, et al. Phytochrome B interacts with LIGULELESS1 to control plant architecture and density tolerance in maize[J]. Molecular plant, 2024.(IF 17.10)

Wang J D, Wang J, Huang L C, et al. ABA-mediated regulation of rice grain quality and seed dormancy via the NF-YB1-SLRL2-bHLH144 Module[J]. Nature Communications, 2024.(IF 14.70)

Jia X, Lin L, Guo S, et al. CLASP-mediated competitive binding in protein condensates directs microtubule growth[J]. Nature Communications, 2024.(IF 14.70)

Chang J, Wu S, You T, et al. Spatiotemporal formation of glands in plants is modulated by MYB-like transcription factors[J]. Nature Communications, 2024.(IF 14.70)

Zhang H, Huang C, Gao C, et al. Evolutionary-Distinct Viral Proteins Subvert Rice Broad-Spectrum Antiviral Immunity Mediated by the RAV15-MYC2 Module[J]. Advanced Science, 2025.(IF 14.30)

Du D, Li Z, Jiang Z, et al. The Transcription Factor WFZP Interacts with the Chromatin Remodeler TaSYD to Regulate Root Architecture and Nitrogen Uptake Efficiency in Wheat[J]. Advanced Science, 2025.(IF 14.10)

Meng T, Chen X, He Z, et al. ATP9A deficiency causes ADHD and aberrant endosomal recycling via modulating RAB5 and RAB11 activity[J]. Molecular Psychiatry, 2023.(IF 13.43)

Li Y, Du Y, Huai J, et al. The RNA helicase UAP56 and the E3 ubiquitin ligase COP1 coordinately regulate alternative splicing to repress photomorphogenesis in Arabidopsis[J]. The Plant Cell, 2022.(IF 12.00)

Shen S Y, Ma M, Bai C, et al. Optimizing rice grain size by attenuating phosphorylation-triggered functional impairment of a chromatin modifier ternary complex[J]. Developmental Cell, 2024.(IF 11.80)

Du D, Li Z, Yuan J, et al. The TaWAK2-TaNAL1-TaDST pathway regulates leaf width via cytokinin signaling in wheat[J]. Science Advances, 2024.(IF 11.70)

登錄

captcha

注冊

*收貨地址:
captcha

客服

微信

高青县| 洛宁县| 山丹县| 晴隆县| 连平县| 额济纳旗| 济阳县| 华容县| 沂南县| 昌邑市| 德安县| 汕尾市| 玛纳斯县| 白山市| 宝丰县| 浦江县| 吉林市| 临邑县| 鹤山市| 开封县| 阜平县| 津市市| 平凉市| 苍南县| 威信县| 黑龙江省| 陈巴尔虎旗| 池州市| 富裕县| 沧州市| 酒泉市| 陕西省| 峨山| 祁连县| 德庆县| 方正县| 黄平县| 庐江县| 湖北省| 盱眙县| 奈曼旗|